Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Hydrogen-bonded chains in 2,2,2-trichloro- N, N^{\prime}-bis(4-methoxyphenyl)-ethane-1,1-diamine and a threedimensional hydrogen-bonded framework in 2,2,2-trichloro- N, N^{\prime}-bis(4-chlorophenyl)ethane-1,1-diamine

Zhen-Feng Zhang, ${ }^{\text {a }}$ * Jian-Hua Qin, ${ }^{\text {b }}$ Si-Qian Wang ${ }^{c}$ and Gui-Rong $\mathbf{Q u}^{\mathbf{a}}$
${ }^{\text {a }}$ College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China, ${ }^{\text {b }}$ College of Chemistry, Luoyang Normal University, Xinxiang 453007, People's Republic of China, and 'Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Correspondence e-mail: zzf5188@sohu.com

Received 7 August 2007
Accepted 23 August 2007
Online 13 October 2007
In 2,2,2-trichloro- N, N^{\prime}-bis(4-methoxyphenyl)ethane-1,1-diamine, $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$, molecules are linked into helical chains by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Molecules of 2,2,2-tri-chloro- N, N^{\prime}-bis(4-chlorophenyl)ethane-1,1-diamine, $\mathrm{C}_{14} \mathrm{H}_{11^{-}}$ $\mathrm{Cl}_{5} \mathrm{~N}_{2}$, are connected into a three-dimensional framework by two independent $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond.

Comment

As a continuation of our structural studies of bis(arylamino)trichloromethylmethanes (Zhang et al., 2007), we report here the molecular and supramolecular structures of 2,2,2-trichloro- N, N^{\prime}-bis(4-methoxyphenyl)ethane-1,1-diamine, (I) (Fig. 1), and 2,2,2-trichloro- N, N^{\prime}-bis(4-chlorophenyl)-ethane-1,1-diamine, (II) (Fig. 2), where the supramolecular aggregations prove to be different from those in 2,2,2-trichloro- N, N^{\prime}-diphenylethane-1,1-diamine, (III), and 2,2,2-trichloro- N, N^{\prime}-bis(4-methylphenyl)ethane-1,1-diamine, (IV),

which we reported recently (Zhang et al., 2007). In (III), the two-dimensional supramolecular structure is built from C $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) contacts, while the crystal structure of (IV) exhibits one-dimensional double columns
formed by a combination of two independent $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and one $\mathrm{Cl} \cdots \mathrm{Cl}$ interaction.

In compounds (I) and (II), the trichloroethane-1,1-diamine fragments adopt a gauche conformation with respect to the $\mathrm{C} 1-\mathrm{C} 2$ bonds, similar to the situation in (III) and (IV). In (II), the dihedral angle between the planes of the two aromatic rings is $88.01(2)^{\circ}$, indicating that these benzene rings are perpendicular to one another. The orientation of the two rings is marginally different from that in (I), where the dihedral angle is 76.37 (3) ${ }^{\circ}$. Selected geometric parameters for (I) and (II) are listed in Tables 1 and 3, respectively. The C2-Cl1 bond in (I) is longer than the other $\mathrm{C}-\mathrm{Cl}$ bonds in compounds (I)-(IV), probably due to the presence of an intramolecular $\mathrm{N} 2-\mathrm{H} 2 \mathrm{D} \cdots \mathrm{Cl} 1$ hydrogen bond (Table 2). The same variation of ca 9° occurs within each pair of exocyclic $\mathrm{C}-\mathrm{C}-\mathrm{O}$ valence

Figure 1
The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
angles in (I), as is well established for 4-methoxyphenyl units (Seip \& Seip, 1973). These deviations suggest the presence of repulsive interactions between $\mathrm{O} 2-\mathrm{CH}_{3}$ and atom H 14 (the distance between the methyl C atom and H 14 is $2.61 \AA$) or $\mathrm{O} 1-\mathrm{CH}_{3}$ and H 7 (the distance between the methyl C atom and H 7 is $2.55 \AA$). The methoxy group on C6 is effectively coplanar with the $\mathrm{C} 3-\mathrm{C} 8$ ring, as shown by the $\mathrm{C} 7-\mathrm{C} 6-\mathrm{O} 1-$ C9 torsion angle of $-4.3(4)^{\circ}$. The situation is, however, different for the methoxy group on C13, where the torsion angle is $-21.3(5)^{\circ}$ and the methyl C atom is displaced from the plane of the $\mathrm{C} 10-\mathrm{C} 15$ aryl ring by 0.408 (4) \AA. In compound (II), the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 14$ and $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$ torsion angles are -2.1 (3) and $-9.5(3)^{\circ}$, respectively, indi-

Figure 3
Part of the crystal structure of (I), showing the formation of a $C(9)$ helical chain parallel to the [010] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk $(*)$ or ampersand (\&) are at the symmetry positions $\left(-\frac{1}{2}-x, y-\frac{1}{2}\right.$, $z)$ and $\left(-\frac{1}{2}-x, \frac{1}{2}+y, z\right)$, respectively.

Figure 4
Part of the crystal structure of (II), showing the formation of a $C(9)$ chain parallel to the [110] direction. Atoms marked with an asterisk (*) or ampersand (\&) are at the symmetry positions $(x-1, y-1, z)$ and $(x+1$, $y+1, z)$, respectively.
cating that atom C 1 lies near the $\mathrm{N} 1 / \mathrm{C} 9-\mathrm{C} 14$ plane. However, atom C1 in (I) is displaced by 0.249 (3) and 0.265 (4) \AA from the $\mathrm{N} 2 / \mathrm{C} 3-\mathrm{C} 8$ and $\mathrm{N} 1 / \mathrm{C} 10-\mathrm{C} 15$ planes, respectively.

The two NH H atoms in each molecule have very similar chemical shifts and coupling constants with the adjacent CH hydrogen $[J=8.8 \mathrm{~Hz}$ in (I) and 8.4 Hz in (II)], suggesting that, in solution at room temperature, on the NMR timescale, the molecules relax to a conformation where the two $\mathrm{H}-\mathrm{N}-\mathrm{C}-$ H torsion angles have similar average magnitudes, though the two $\mathrm{H}-\mathrm{N}-\mathrm{C}-\mathrm{H}$ torsion angles in each molecule in the solid state are different [-169 and -128° for $\mathrm{H} 1 D-\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$ and $\mathrm{H} 2 D-\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1$, respectively, in (I), and -155 and -128° for $\mathrm{H} 2 D-\mathrm{N} 2-\mathrm{C}-\mathrm{H} 1$ and $\mathrm{H} 1 D-\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$, respectively, in (II)].

In compound (I), the molecules are linked into helical chains by a single $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2). Atom N 1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to methoxy atom O1 in the molecule at $\left(-\frac{1}{2}-x, y-\frac{1}{2}, z\right)$. Propagation by an a-glide plane at $x=-\frac{1}{4}$ then generates a $C(9)$ (Bernstein et al., 1995) chain running parallel to the [010] direction (Fig. 3). Eight chains of this type pass through each

Figure 5
Part of the crystal structure of (II), showing the formation of a $C(9)$ chain parallel to the $\left[1, y, \frac{1}{4}\right]$ direction. Atoms marked with an asterisk (*) or ampersand (\&) are at the symmetry positions $(x+1, y-1, z)$ and $(x-1$, $y+1, z)$, respectively.

Figure 6
Part of the crystal structure of (II), showing the formation of a $C(5)$ chain of rings along the [010] direction. Atoms marked with an asterisk (*) or ampersand (\&) are at the symmetry positions $\left(2-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$ and $\left(2-x,-\frac{1}{2}+y, \frac{1}{2}-z\right)$, respectively.

organic compounds

unit cell; four of these, running along the $\left(-\frac{1}{4}, y, \frac{3}{8}\right),\left(\frac{3}{4}, y, \frac{3}{8}\right)$, $\left(-\frac{1}{4}, y, \frac{7}{8}\right)$ and $\left(\frac{3}{4}, y, \frac{7}{8}\right)$ directions, are related to each other by translational symmetry operations, and they are related by an a-glide plane to the other four chains running along the $\left(-\frac{1}{4}, y, \frac{1}{8}\right),\left(\frac{3}{4}, y, \frac{1}{8}\right),\left(-\frac{1}{4}, y, \frac{5}{8}\right)$ and $\left(\frac{3}{4}, y, \frac{5}{8}\right)$ directions. There are no direction-specific interactions between adjacent chains.

There are no aromatic $\pi-\pi$ stacking interactions in the structure of (II); instead, the molecules are linked into a complex three-dimensional framework by a combination of two independent $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond (Table 4). However, the structure of (II) can be easily analyzed in terms of three one-dimensional substrutures. In the first substructure, atom Cl 5 in the molecule at (x, y, z) forms an intermolecular interaction with trichloromethyl atom $\mathrm{Cl} 3[\mathrm{Cl} 5 \cdots \mathrm{Cl} 3=3.343(2) \AA]$ in the molecule at $(x+1, y, z)$. Propagation by translation then generates a $C(9)$ chain running along the [110] direction (Fig. 4). In the same way, the second substructure is constructed by way of a $\mathrm{Cl} \cdots \mathrm{Cl}$ interaction: atom Cl 4 in the molecule at (x, y, z) forms another independent intermolecular interaction with trichloromethyl atom Cl 2 $[\mathrm{Cl} 4 \cdots \mathrm{Cl} 2=3.469(2) \AA]$ in the molecule at $(x+1, y-1, z)$, so forming by translation a $C(9)$ chain parallel to the [1 $\overline{1} 0]$ direction (Fig. 5). In the third substructure, atom H8 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom Cl 4 in the molecule at $\left(-x+2, y+\frac{1}{2},-z+\frac{1}{2}\right)$, thus generating a $C(5)$ chain along the $\left(1, y, \frac{1}{4}\right)$ direction and generated by a 2_{1} screw axis along ($1, y, \frac{1}{4}$) (Fig. 6). The combination of these three chain motifs links molecules of (II) into a threedimensional framework.

Experimental

For the synthesis of (I), chloral hydrate ($16.5 \mathrm{~g}, 0.1 \mathrm{~mol}$) and 4-methoxyaniline (0.2 mol) were mixed in ethyl acetate $(25-30 \mathrm{ml}$) and heated until dissolution of the solid occurred. Cooling of the hot solution, followed by slow evaporation of the solvent at room temperature, yielded the crude product (yield 86\%). Single crystals of (I) were obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot{ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz$): \delta 6.71(m, 8 \mathrm{H}, 2 \mathrm{Ar}), 5.63(d, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, 2 NH), $5.42(t, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.59\left(s, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$. Compound (II) was synthesized by heating with stirring a mixture of chloral hydrate $(16.5 \mathrm{~g}, 0.1 \mathrm{~mol})$, freshly distilled 4 -chloroaniline (0.2 mol) and ethyl acetate ($25-30 \mathrm{ml}$) until dissolution of the solid occurred. Cooling of the hot solution and slow evaporation of the solvent at room temperature yielded a crystalline product (yield 82%). Single crystals of (II) were obtained by recrystallization from hot dimethyl sulfoxide. ${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz$): \delta 6.93(m, 8 \mathrm{H}, 2 \mathrm{Ar}), 6.32(d, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \mathrm{NH}), 5.73(t, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$.

Compound (I)

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$	$V=3470.3(14) \AA^{3}$
$M_{r}=375.67$	$Z=8$
Orthorhombic, Pbca	Mo $K \alpha$ radiation
$a=9.717(2) \AA$	$\mu=0.54 \mathrm{~mm}^{-1}$
$b=10.575(3) \AA$	$T=291(2) \mathrm{K}$
$c=33.772(8) \AA$	$0.38 \times 0.29 \times 0.25 \mathrm{~mm}$

Data collection
Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min }=0.822, T_{\max }=0.876$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046 \quad 210$ parameters
$w R\left(F^{2}\right)=0.109$
H -atom parameters constrained
$S=1.05$
3233 reflections

23826 measured reflections 3233 independent reflections 2571 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.066$

Table 1

Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{Cl} 1-\mathrm{C} 2$	$1.790(3)$	$\mathrm{O} 2-\mathrm{C} 16$	$1.396(4)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 1$	$125.2(2)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7$	$125.1(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	$121.8(2)$	$\mathrm{C} 15-\mathrm{C} 10-\mathrm{N} 1$	$125.2(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$111.4(2)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 1$	$117.6(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{N} 2$	$123.6(2)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{O} 2$	$125.1(3)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$115.8(2)$	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 12$	$116.1(3)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$-67.7(3)$	$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7$	$-4.3(4)$
$\mathrm{Cl} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2$	$177.96(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 15$	$13.6(4)$
$\mathrm{Cl} 2-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$174.51(18)$	$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-179.6(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 8$	$-13.1(4)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 2$	$179.6(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.9(2)$		

Table 2
Hydrogen-bond and short-contact geometry ($\left({ }^{\circ},^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 D \cdots \mathrm{Cl} 1$	0.86	2.67	$3.030(3)$	107
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots 1^{\mathrm{i}}$	0.86	2.54	$3.150(3)$	128

Symmetry code: (i) $-x-\frac{1}{2}, y-\frac{1}{2}, z$.

Compound (II)

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{5} \mathrm{~N}_{2}$
$M_{r}=384.50$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.0186$ (6) \AA
$b=8.0624$ (8) \AA
$c=33.082$ (3) \AA

Data collection

Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.706, T_{\text {max }}=0.791$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.063$
$S=1.03$
2990 reflections
190 parameters
H -atom parameters constrained
$V=1605.3(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.90 \mathrm{~mm}^{-1}$
$T=291(2) \mathrm{K}$
$0.42 \times 0.31 \times 0.28 \mathrm{~mm}$

11400 measured reflections 2990 independent reflections 2898 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}^{\mathrm{A}} \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e} \mathrm{A}^{-3}$
Absolute structure: Flack (1983), with 607 Friedel pairs
Flack parameter: -0.02 (5)

Table 3
Selected geometric parameters ($\left(\AA^{\circ}\right)$ for (II).

$\mathrm{C} 9-\mathrm{C} 10$	$1.404(3)$		
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	$126.37(16)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 14$	
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 4$	$123.51(17)$		
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 18)$	$144.05(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 14$	$-2.1(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-9.5(3)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 13$	$179.2(2)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$177.69(19)$		

Table 4
Hydrogen-bond and short-contact geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{Cl} 2$	0.86	2.69	$3.049(2)$	106
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Cl} 4^{\mathrm{i}}$	0.93	2.89	$3.774(3)$	160

Symmetry code: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$.

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier atom $)$.

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997);
program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Physiochemical Analysis Measurement Institute of Chemistry, Luoyang Normal University. We also acknowledge the Initial Fund for Scientific Research of Henan Normal University.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM3036). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Seip, H. M. \& Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, Z.-F., Wang, D.-C., Wang, J.-G. \& Qu, G.-R. (2007). Acta Cryst. C63, o524-o527.

